Science Information |
The Wages of Science
In the United States, Congress approved, last month, increases in the 2003 budgets of both the National Institutes of Health and National Science Foundation. America is not alone in - vainly - trying to compensate for imploding capital markets and risk-averse financiers. In 1999, chancellor Gordon Brown inaugurated a $1.6 billion program of "upgrading British science" and commercializing its products. This was on top of $1 billion invested between 1998-2002. The budgets of the Medical Research Council and the Biotechnology and Biological Sciences Research Council were quadrupled overnight. The University Challenge Fund was set to provide $100 million in seed money to cover costs related to the hiring of managerial skills, securing intellectual property, constructing a prototype or preparing a business plan. Another $30 million went to start-up funding of high-tech, high-risk companies in the UK. According to the United Nations Development Programme (UNDP), the top 29 industrialized nations invest in R&D more than $600 billion a year. The bulk of this capital is provided by the private sector. In the United Kingdom, for instance, government funds are dwarfed by private financing, according to the British Venture Capital Association. More than $80 billion have been ploughed into 23,000 companies since 1983, about half of them in the hi-tech sector. Three million people are employed in these firms. Investments surged by 36 percent in 2001 to $18 billion. But this British exuberance is a global exception. Even the - white hot - life sciences field suffered an 11 percent drop in venture capital investments last year, reports the MoneyTree Survey. According to the Ernst & Young 2002 Alberta Technology Report released on Wednesday, the Canadian hi-tech sector is languishing with less than $3 billion invested in 2002 in seed capital - this despite generous matching funds and tax credits proffered by many of the provinces as well as the federal government. In Israel, venture capital plunged to $600 million last year - one fifth its level in 2000. Aware of this cataclysmic reversal in investor sentiment, the Israeli government set up 24 hi-tech incubators. But these are able merely to partly cater to the pecuniary needs of less than 20 percent of the projects submitted. As governments pick up the monumental slack created by the withdrawal of private funding, they attempt to rationalize and economize. The New Jersey Commission of Health Science Education and Training recently proposed to merge the state's three public research universities. Soaring federal and state budget deficits are likely to exert added pressure on the already strained relationship between academe and state - especially with regards to research priorities and the allocation of ever-scarcer resources. This friction is inevitable because the interaction between technology and science is complex and ill-understood. Some technological advances spawn new scientific fields - the steel industry gave birth to metallurgy, computers to computer science and the transistor to solid state physics. The discoveries of science also lead, though usually circuitously, to technological breakthroughs - consider the examples of semiconductors and biotechnology. Thus, it is safe to generalize and say that the technology sector is only the more visible and alluring tip of the drabber iceberg of research and development. The military, universities, institutes and industry all over the world plough hundreds of billions annually into both basic and applied studies. But governments are the most important sponsors of pure scientific pursuits by a long shot. Science is widely perceived as a public good - its benefits are shared. Rational individuals would do well to sit back and copy the outcomes of research - rather than produce widely replicated discoveries themselves. The government has to step in to provide them with incentives to innovate. Thus, in the minds of most laymen and many economists, science is associated exclusively with publicly-funded universities and the defense establishment. Inventions such as the jet aircraft and the Internet are often touted as examples of the civilian benefits of publicly funded military research. The pharmaceutical, biomedical, information technology and space industries, for instance - though largely private - rely heavily on the fruits of nonrivalrous (i.e. public domain) science sponsored by the state. The majority of 501 corporations surveyed by the Department of Finance and Revenue Canada in 1995-6 reported that government funding improved their internal cash flow - an important consideration in the decision to undertake research and development. Most beneficiaries claimed the tax incentives for seven years and recorded employment growth. In the absence of efficient capital markets and adventuresome capitalists, some developing countries have taken this propensity to extremes. In the Philippines, close to 100 percent of all R&D is government-financed. The meltdown of foreign direct investment flows - they declined by nearly three fifths since 2000 - only rendered state involvement more indispensable. But this is not a universal trend. South Korea, for instance, effected a successful transition to private venture capital which now - even after the Asian turmoil of 1997 and the global downturn of 2001 - amounts to four fifths of all spending on R&D. Thus, supporting ubiquitous government entanglement in science is overdoing it. Most applied R&D is still conducted by privately owned industrial outfits. Even "pure" science - unadulterated by greed and commerce - is sometimes bankrolled by private endowments and foundations. Moreover, the conduits of government involvement in research, the universities, are only weakly correlated with growing prosperity. As Alison Wolf, professor of education at the University of London elucidates in her seminal tome "Does Education Matter? Myths about Education and Economic Growth", published last year, extra years of schooling and wider access to university do not necessarily translate to enhanced growth (though technological innovation clearly does). Terence Kealey, a clinical biochemist, vice-chancellor of the University of Buckingham in England and author of "The Economic Laws of Scientific Research", is one of a growing band of scholars who dispute the intuitive linkage between state-propped science and economic progress. In an interview published last week by Scientific American, he recounted how he discovered that: "Of all the lead industrial countries, Japan - the country investing least in science - was growing fastest. Japanese science grew spectacularly under laissez-faire. Its science was actually purer than that of the U.K. or the U.S. The countries with the next least investment were France and Germany, and were growing next fastest. And the countries with the maximum investment were the U.S., Canada and U.K., all of which were doing very badly at the time." The Economist concurs: "it is hard for governments to pick winners in technology." Innovation and science sprout in - or migrate to - locations with tough laws regarding intellectual property rights, a functioning financial system, a culture of "thinking outside the box" and a tradition of excellence. Government can only remove obstacles - especially red tape and trade tariffs - and nudge things in the right direction by investing in infrastructure and institutions. Tax incentives are essential initially. But if the authorities meddle, they are bound to ruin science and be rued by scientists. Still, all forms of science funding - both public and private - are lacking. State largesse is ideologically constrained, oft-misallocated, inefficient and erratic. In the United States, mega projects, such as the Superconducting Super Collider, with billions already sunk in, have been abruptly discontinued as were numerous other defense-related schemes. Additionally, some knowledge gleaned in government-funded research is barred from the public domain. But industrial money can be worse. It comes with strings attached. The commercially detrimental results of drug studies have been suppressed by corporate donors on more than one occasion, for instance. Commercial entities are unlikely to support basic research as a public good, ultimately made available to their competitors as a "spillover benefit". This understandable reluctance stifles innovation. There is no lack of suggestions on how to square this circle. Quoted in the Philadelphia Business Journal, Donald Drakeman, CEO of the Princeton biotech company Medarex, proposed last month to encourage pharmaceutical companies to shed technologies they have chosen to shelve: "Just like you see little companies coming out of the research being conducted at Harvard and MIT in Massachusetts and Stanford and Berkley in California, we could do it out of Johnson & Johnson and Merck." This would be the corporate equivalent of the Bayh-Dole Act of 1980. The statute made both academic institutions and researchers the owners of inventions or discoveries financed by government agencies. This unleashed a wave of unprecedented self-financing entrepreneurship. In the two decades that followed, the number of patents registered to universities increased tenfold and they spun off more than 2200 firms to commercialize the fruits of research. In the process, they generated $40 billion in gross national product and created 260,000 jobs. None of this was government financed - though, according to The Economist's Technology Quarterly, $1 in research usually requires up to $10,000 in capital to get to market. This suggests a clear and mutually profitable division of labor - governments should picks up the tab for basic research, private capital should do the rest, stimulated by the transfer of intellectual property from state to entrepreneurs. But this raises a host of contentious issues. Such a scheme may condition industry to depend on the state for advances in pure science, as a kind of hidden subsidy. Research priorities are bound to be politicized and lead to massive misallocation of scarce economic resources through pork barrel politics and the imposition of "national goals". NASA, with its "let's put a man on the moon (before the Soviets do)" and the inane International Space Station is a sad manifestation of such dangers. Science is the only public good that is produced by individuals rather than collectives. This inner conflict is difficult to resolve. On the one hand, why should the public purse enrich entrepreneurs? On the other hand, profit-driven investors seek temporary monopolies in the form of intellectual property rights. Why would they share this cornucopia with others, as pure scientists are compelled to do? The partnership between basic research and applied science has always been an uneasy one. It has grown more so as monetary returns on scientific insight have soared and as capital available for commercialization multiplied. The future of science itself is at stake. Were governments to exit the field, basic research would likely crumble. Were they to micromanage it - applied science and entrepreneurship would suffer. It is a fine balancing act and, judging by the state of both universities and startups, a precarious one as well. About The Author Sam Vaknin is the author of Malignant Self Love - Narcissism Revisited and After the Rain - How the West Lost the East. He is a columnist for Central Europe Review, PopMatters, and eBookWeb , a United Press International (UPI) Senior Business Correspondent, and the editor of mental health and Central East Europe categories in The Open Directory Bellaonline, and Suite101 . Until recently, he served as the Economic Advisor to the Government of Macedonia. Visit Sam's Web site at http://samvak.tripod.com; palma@unet.com.mk
MORE RESOURCES: Unable to open RSS Feed $XMLfilename with error HTTP ERROR: 404, exiting |
RELATED ARTICLES
Earthquake and Disaster Delays in Scientific Innovation In our present period we are continually reminded that we live on the surface of the planet and with that great honor comes issues of Mother Nature we must deal with. It is a fair trade off, as you get sunshine, warmth and heat from the sun; water, fish and surfing opportunities from the ocean and the stars, moon and cosmos to propel thought, enlightenment and understanding of who we are and perhaps some insight into why we are here. Theoretically is it Possible to Defy Gravity? Many believe it is possible to build an anti-gravity machines and there are many small version which can do this by interfering with the gravity waves. Other say why build an anti-gravity wave machine when you can use the gravity to pull you the other way. Bio-Rhythm Disruption Frequency Identifier for Human Intentions It appears we have found many identifiers for Bio-Metrics to identify people. In this new age of International Terrorism with bad guys trying to get Pilot's Licenses, HazMat Driver's Licenses, get onto airlines, step onto buses and sneak over our borders we need a fool proof system. Energy Aware and Waste Wise Constantly bombarded with negative information about the environment, finances and natural resources? Feeling overwhelmed? Each and every one of us can do something to help our world - starting right where we are, right now. Though not everyone can afford to donate cash or time to a cause, there are endless tactics that will decrease an individual's contribution to the landfill and their resource consumption. Transducers - The Remarkable Changers Complex control systems all make use of signals that can be easily measured and altered remotely. Automatically operated machines or actuators need to be powered either by electrical motors, pneumatic or hydraulic cylinders. Aerodynamic Changes Need To Be Made In MAVs; Micro Air Autonomous Vehicles Aerodynamic changes need to be made in MAVs. Micro-Air Autonomous vehicles. How A Light Bulb Works and Other Interesting Tidbits Light Bulb ScienceEver wonder how a light bulb works? I mean it seems easy, you flick a switch and "bam" there is light! While not much more complicated than that, there is a little science involved.To understand how a light works you need to understand certain terms including voltage, watt and amperage. Troubleshooting Pump Problems the Easy Way In any problem analysis, we have to specify the problem, check whether there is any deviation from the normal condition, identify the possible causes, evaluate the possible causes and then confirm the true cause.Pumps or other machinery will give tell tale signs when they are not working properly. Chimpanzees and Humans a lot in common Those who study chimpanzees are often amazed completely with the abilities of that species. They tend to be able to raise their level of awareness and concentration to a completely higher level than we ever believed. Launching 400 UAVs from a Transport Plane How to launch hundreds of UAVs for an autonomous mission from a transport plane. As we watched the MOAB parachute bomb drop out of a C-130 onto the desert and above the tunnels below into Afghanistan, it left the world in awe. Small Attack Submarines, Which Turn Into Hydrofoils and Fly We propose single man underwater vehicles (attack submarines), which have inflatable Airbags using CO2 cartridges for rapid ascent. The design of these vehicles will encompass bended material, which makes rings underneath resembling typical designs of small hydrofoils. Ceramic Coatings Inside Plastic Water Bottles? A new report claims Water in plastic bottles could pose a problem, and of course why wouldn't it? This is a much debated topic indeed, so please read.http://www. The Debate About Cloning There are two types of cloning. One involves harvesting stem cells from embryos ("therapeutic cloning"). Organic Decoy Devices for Warfare (ODDW) We can genetically modify a rat to be the same body temperature as a humans, then parachute in several thousand rats into enemy territory. These rats will pick up the enemies advanced warning and intrusion sensors by way of heat signature. Mars Surface Exploration and AFF As we study more and more about Mars we know there is life. Unfortunately in many regions of the planet it is not so evident. UAV Stealth and Radar Energy Capture for Power and Propulsion A Feasible Idea for UAV Flight, Possible Research and Development Test; UAV Stealth and Radar Energy Capture for Power and Propulsion to drive your enemy crazy.Powering a UAV, while being able to reuse it, increasing it's payload takes a lot of trial and error and engineering and research, which of course costs lots of money. UAV Mini - Torpedo Bombers for Eliminating Hydro Cushioned Water Craft UAVs can carry cargo, some of the very tiny UAV units can hold up to 11 lbs. Which is not much, however. Enemy UAV Defense is under consideration Unmanned Aerial Vehicles should be shot down from the air rather than the ground because if they are flown tele-robotically the operator who is looking down and forward will not know where the anti-aircraft device is. If the enemy uses Unmanned Aerial Vehicles to draw fire, which is a smart move for them, then once fired upon the Unmanned Aerial Vehicle whether it is shot down or not has now located our weaponry and troops. Robotics Wars If we are having difficulty getting recruits into the army; lets hire some robots? General Patton's famous quote goes "?an army moves on it's stomach" and if you look at the needs of humans to complete a mission they require much in the way of logistical support, where as robots do not, sure some, but much less and we are not just talking about chaplains, psyche councilors, medics, recruiters, human resource personnel and cooks. Any component under the Joint Chiefs is full of a complexity of needs. Remote Control Bacteria; We Can Not Allow That. Remote Control Bacteria. Why not, we have remote control everything. |
home | site map | contact us |